婷婷四房播播-亚洲国产精品无码中文lv-二区不卡-亚洲美女激情视频-2024av天堂手机在线观看-免费国产a国产片高清网站-日本中文字幕在线观看-成人免费版-成人网站亚洲综合久久-一级性爱视频-日韩欧美成人免费观看-亚洲成αv人片在线观看-国产一区二区三区高清在线观看-国产91免费视频-最新中文乱码字字幕在线-深夜福利网址-欧美浓毛大泬视频-精品丝袜在线-怡红院av亚洲一区二区三区h-少妇1~3伦理

     
  中文版 English
 
Hot news:
  News
  Company news
  Industry News
  Current news
Hot Product
IPX1 IPX2 Drip Waterproof Test...
UL1439 Sharp Edge Tester
BND-TPK05 IEC 60529 Test Probe...
IEC62368 test probe kit BND-TP...
IEC 61032 Standard Test Probe ...
IEC60320 EN60320 Appliances co...
UL 498 Standard Plugs and Rece...
IPX1 to IPX4 Drip rain test an...
Vertical horizontal vibration ...
IP5X IP6X Sand and dust proof ...
climate constant temperature a...
IPX1 to IPX9 waterproof testin...
 
 
Industry News
Home  -  News  -  Industry News
Understanding the Functionality and Procedures of High and Low Temperature Test Chambers
From: BONAD  Date: 2024-11-07 17:57:44

High and low temperature test chambers are crucial devices used for performing reliability tests on industrial products. These chambers simulate extreme temperature environments to evaluate the performance of various products, including electronic devices, automotive parts, aerospace components, and marine weaponry.

Working Principle of High and Low Temperature Test Chambers

The operation of high and low temperature test chambers is primarily based on precise temperature control and regulation. Let's explore the high-temperature control first. Heating is essential to achieve high temperatures within the chamber, which is relatively straightforward. Typically, these chambers use far-infrared nickel-chromium alloy high-speed heating wires for this purpose. The temperature control system employs a PID+SSR system to ensure accurate and efficient energy usage.

For low-temperature operations, increasing the number of heating wires and enhancing the performance of the temperature control software are necessary for rapid heating and achieving high temperatures. Additionally, the refrigeration system is critical for attaining low temperatures. The refrigeration system usually consists of a fully enclosed compressor unit from a French manufacturer, utilizing fluorine refrigerants for cooling. Its operation is based on the reversed Carnot cycle, where the refrigerant is compressed to a higher pressure through the compressor and then exchanges heat with the surrounding medium via the condenser to achieve cooling.

In summary, high and low temperature test chambers transition between extreme temperatures through a synergistic action of temperature balance and control systems. During continuous operation, the control system uses PID automatic calculation to adjust heater output, achieving dynamic balance and ensuring stable chamber operation.

225L Constant Temperature and humidity Test chamber

Standard Operating Procedures for High and Low Temperature Test Chambers

1. Power Connection: Connect the power source and switch on the power switch, typically located on the side panel of the control cabinet.

2. Standby Check: Allow the chamber to run for at least 60 seconds and check for any phase sequence alarms.

3. Cooling Water System: Activate the cooling water pump's power switch and open both inlet and outlet valves for cooling water. Ensure that the drain valve is closed before opening. Monitor water pressure gauge readings at both inlet and outlet, ensuring pressure between 0.2~0.6Mpa with a pressure difference greater than 0.2Mpa. Also, ensure water temperature does not exceed 28℃.

4. Humidification Device Setup: If humidity operation is needed, turn on the humidification device's power switch and open the water pipe valve.

5. Setting Test Parameters: Set required temperature and humidity parameters on the chamber's control panel.

6. Start the Test Chamber: After setting test parameters, start the test chamber and enable over-temperature protection.

7. Fault Handling: In case of any alarms during testing, refer to the "Installation and Maintenance Manual" for troubleshooting procedures.

Common Dehumidification Methods in High and Low Temperature Test Chambers

1. Refrigeration Dehumidification Method: This method condenses water vapor in air onto a cold surface, forming water or frost which is then removed from the chamber. However, prolonged testing may cause frost buildup affecting dehumidification efficiency; thus controlling cold surface temperatures above 0℃ is crucial.

2. Solid Desiccant Dehumidification Method: This method absorbs water vapor from air using solid desiccants to achieve dehumidification—ideal for tests requiring lower dew point temperatures around -70℃. Although effective in achieving lower humidity levels due to lower surface water vapor pressure of desiccants, it can be inconvenient requiring specialized equipment.

In special test scenarios like testing internal combustion engines at low temperatures or during operation requiring large air supply for fuel combustion—solid desiccant-based rotary dehumidifiers operating continuously are typically used to prevent excessive frost buildup on evaporators due to new air’s water vapor.

 

 
 
Home  |  Products  |  News  |  About us  |  Feedback  |  Contact us  |  
Copyright © 2008-2015 Hong Kong Bonad Technology Limited | Shenzhen Bonad Instrument Co., LTD. All Rights Reserved.
 
    Add:C505, Hongdu Building,Bao\\\'an45 district,Shenzhen,518101,Guangdong Province,China    Tel:+86-13380391156    Fax:0755-23721200    Email:Alice@szbonad.com